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On mass transports generated by tides and long waves 

By J. M. HUTHNANCE 
Institute of Oceanographic Sciences, Bidston Observatory, Merseyside L4.3 7RA 

(Received 3 November 1979 and in revised form 19 May 1980) 

For small-amplitude barotropic wave motion in a shallow fluid, Moore (1970) found 
that the associated mean mass transport is geostrophic, but otherwise arbitrary in the 
absence of friction. We show how weak friction, or starting the motion from rest, 
determines the mass transport by restricting circulation around closed geostrophic 
( f /h)  contours. The resulting transport is quadratic in oscillatory quantities and 
depends on the friction type, but not on its (weak) magnitude. Comparison is made 
with earlier results in particular geometries. A tendency for anticyclonic circulation 
around shallow regions is found, and extends to large-amplitude oscillations where 
particle excursions exceed the topographic length scale. We suggest that numerical 
schemes for calculating tidal residuals should conserve mass and vorticity . 

1. Introduction 
Currents in the sea are usually dominated by fluctuating motions, and especially 

by regular tidal oscillations on many continental shelves. However, mean or residual 
currents (say the average over a tidal cycle) are important for the longer term move- 
ment of sea-floor sediments, fish larvae and indeed the sea-water itself. 

Mean currents may arise from meteorological forcing, horizontal density gradients 
and externally imposed sea-surface slopes in limited-area models. These effects can 
usually be added (as indicated in $3 below) to that discussed here, namely, mean 
currents generated nonlinearly from oscillatory motion such as tides. 

In  broad terms, let v be an oscillatory current. Then the convective acceleration 
v. Vv, say, has a non-zero time average, and appears as a forcing term in the time- 
averaged momentum equation. This organized analogue of a turbulent Reynolds 
stress has been termed ‘tidal stress’ (e.g. Nihoul 1975) in a tidal context. It makes an 
important contribution to mean currents in (for example) the English Channel 
(Pingree & Maddock 1977), the southern North Sea (Prandle 1978) and over the 
Grand Banks (Loder 1980). 

Laboratory experiments by Whitehead (1976) and Colin de Verdihre (1979) have 
demonstrated mean currents generated by waves in rotating shallow water. 

In  a non-rotating context, wave-induced mean flows were first studied by Stokes 
( 1847). They were calculated for small-amplitude oscillations by Longuet-Higgins 
(1953) in and close to one-dimensional thin boundary layers. Longuet-Higgins’ (1970) 
calculation of circulation around islands utilizes this analysis for a side-wall boundary 
layer. Extensions to two horizontal dimensions were by Hunt & Johns (1963) for the 
bottom boundary layer and e.g. Liu (1977) for the free surface. Ianniello (1977, 1979) 
considered tidally-induced mean currents in essentially one horizontal dimension but 
with greater viscosity so that the bottom ‘boundary layer’ includes the whole depth. 
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On a deep rotating ocean, Ursell (1950; see also Hasselmann 1970) found that 
surface waves induce no mass transport. In rotating shallow water, mass transport 
in the bottom boundary layer has been calculated by Hunt & Johns (1963), Johns & 
Dyke (1972) and Lamoure & Mei ( 1977), given the mean current above, which remains 
to be determined. Neglecting viscosity entirely, Moore (1970) showed that the shallow 
water mass transport is horizontally non-divergent and follows geostrophic ( f / h )  
contours. In  a context uniform in one of the horizontal co-ordinates and including 
linear bottom friction, its strength was found by Huthnance ( 1 9 7 3 ~ )  and Loder (1980). 
Oscillatory motion depending on both horizontal co-ordinates was considered by Ou 
& Bennett (1979), but their analysis (as opposed to numerical calculations) covered 
only the mean circulation along a straight coastline bounding water of uniform depth ; 
linear bottom friction was again assumed. Stern & Shen (1976) considered slow 
oscillations of period to, where to % spin-up time 9 inertial period. 

For the small-amplitude oscillations common to all the above work, we find here 
that the strength of the mass transport can be evaluated from a simple constraint 
(3.8) of zero net frictional torque around closed fluid circuits of constant f / h .  This 
holds for various friction types, and may also be applied to a context where the 
driving oscillatory flow evolves, as in the tidal spring-neap cycle or motion growing 
from rest. 

Growing oscillations provide our link with other studies which regard the fluctua- 
tions aa turbulent with no explicit representation of friction. Such an approach is 
probably more appropriate to the largely random (taking a broad view) quasi- 
geostrophic fluctuations in deep-sea and atmospheric motions. Turbulence and 
growing oscillations are distinguished from periodic waves by a time-increase of 
mean-square particle separations, with implications for eddy fluxes of the convected 
vorticity and thence for the mean-flow development (e.g. Rhines 1979). Thus, eddies 
may contribute to ocean circulation (e.g. Rhines & Holland 1979). Bretherton & 
Haidvogel ( 1976) found that the stream function for initially turbulent flow typically 
evolves to an almost steady smoothed version of the (slightly varying) depth, with 
anticyclonic circulation around shallows of large area and convection df potential 
vorticity without change across topography of small horizontal scale. In  QQ3 and 7 
we find similar results for the mean flows induced by periodic motion. 

After the equations of motion are presented in $2, the torque constraint on mean 
circulation is derived in $3. The inclusion of additional forcing by wind stress, hori- 
zontal density gradients and the tide generating potential is also discussed. The 
torque constraint is obtained again in Q 4 by a more physical argument using potential 
vorticity. A tendency for anticyclonic circulation around shallower areas is found. In 

i $ 5  comparison is made with earlier results for one-dimensional features (Huthnance 
1 9 7 3 ~ ;  Johns 1973) and a polar P-plane (Rhines 1976). Flows associated with oscilla- 
tions of large amplitude are considered in Q 6; anticyclonic circulation around shallow 
regions is the rule in this case. In  Q 7 the small amplitude theory is extended to regions 
of near-uniform f / h ,  to motion started from rest, and to lateral friction. Intermediate 
amplitudes are also considered, particularly over small-scale topography. The final 
discussion ( Q  8) suggests that numerical schemes for modelling residual currents 
should conserve mass and vorticity and represent frictional forces realistically. 



Il'ave-generated mass transports 369 

2. Formulation 
We initially consider unforced 'hydrostatic ' motion of a homogeneous, incom- 

pressible sea with surface elevation t: above the still water level z = 0. The horizontal 
momentum equation is 

(2.1) 

where the suffix H denotes horizontal components and k is the vertical unit vector. 
Other quantities are defined and non-dimensionalized against various scales as 
follows: 

horizontal co-ordinates, x, y: horizontal length scale L (the lesser of the topographic 
length scale or a wavelength); 

upward vertical co-ordinate z: typical water depth h,; 
time t ,  inertial time scale f-l:  typical inertial time scale f;'; 
velocity u = (u, v, w): (U,  U ,  hoU/L) where U is a typical (oscillatory) current 

elevation 6: f,UL/(gravitational acceleration g )  ; 
horizontal (stress/density) T: typical (stress/density) 70. 

a u H / a t  + EU . V U ,  +fk A uII = - ~~~c + F a T p  

magnitude; 

The resulting non-dimensional parameters are (i) the Rossby number 

relating the magnitude U/fo of oscillatory particle excursions to the horizontal length 
scale L; (ii) the divergence parameter 

D2 3 f :L2/gho 

comparing the length scale L with the Rossby radius of deformation (gh,))/fo and 
(iii) the parameter 

F = 70/(hoUfO) 

measuring the relative importance of frictional stresses. 
The continuity equation V .u = 0 integrates vertically to 

D2aCpt + v, . [ (h  + €02{)V] = 0 (2.2) 

exactly, when we apply the kinematic free surface condition and suppose no flow 
through the sea floor. The vertical average of the momentum equation (2.1) is (using 
continuity) 

a V p t  + €V. V H V  +fk A V = - V H l -  FTB/d. (2.3) 

Here d is the total water depth h+sDzc, and T~ is the bottom friction stress. The 
horizontal velocity uH = v+u, is written as a combination of its verticaraverage 

v G d-1 y p c u , d z  
-h  

and a departure uB. A term 

- eFd-'V,. [I cD'cuBuB d z / p ]  
- A  

representing momentum flux in bottom (and surface) boundary layers has been 
omitted from the right hand side of (2.3); we reintroduce it with the wind stress and 
other forcing at the end of $3. 
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We consider in particular weak friction, i.e. small F ;  in a tidal context this in effect 
means a dissipation time of a day or more. F also measures the relative thickness of 
the bottom boundary layer, where uB is significant; elsewhere in basically barotropic 
flow uB is O ( F ) .  

By cross-differentiating (2.3) a potential vorticity equation is obtained using (2.2): 

(a/at + BV . V,) (W + E - l f ) / d  = - F/d k . curl T&, (2.4) 

where w = avlax - au/ay is the vertical vorticity component. 

3. Small-amplitude oscillations 
We write v = V, + SV,+ . .. ,c = c, +ecZ + . . . , T~ = T~~ + E T ~ ~ + .  . . , the Rossbynumber 

E being small. The major contributions vl, el, etc. are supposed to be oscillatory with 
zero time average: 6 = 0 = c. Means v, 5 are included in E V ~ ,  E&. This scaling accords 
with previous experience of rectified oscillatory motion, and is found below to be 
appropriate. Periodic motion is assumed so that = 0 for any flow quantity X .  
Overbars denote averaging over a period, and it is also convenient to write vi for the 

indefinite time integral v,dt, and vlt for av,/at etc. st 
To lowest order in 8,  (2.3) gives 

aV,/at + f k A V, = - v& - FTBl/h. (3.1) 

Solving (3.1) for v1 in terms of el and T, = ( -TElt+fk ~ ~ ~ , ) / h ( f ~ - c r ~ ) ,  straight- 
forward but lengthy algebra shows that 

vi.VIfvi-.fk~ v4-VIivi+ 4V,(vi.V&) 

= P{T,. V,V, + ~ 1 .  VHT, +fk A (-1 + ~ 1 .  V,Ti) + &V,(T,. VI&)} + O(F2) 

= P{gV,(v~ . ~ ~ , / h )  + (k. curl Tnl/h) (k A v;)} + O(F2). ( 3 4  

Here is the oscillation frequency, and T, merely a convenient intermediate notation. 
The lowest order Po balance in (3.2) was found by Moore (1970). 

It is convenient to work with the Lagrangian-mean (mass-transport) velocity 
- 

SU, = EVZ + EV: . vv,, 
‘ Lagrange = Euler + Stokes ’ (3.3) 

(Longuet-Higgins 1953, 1969). By (2.2), following Moore (1970), 

V,I.[hU,I = 0 ( S 2 )  (3.4) 

so that to sufficient accuracy hU,, has a stream function $: U, = klVII$  A k. 
Moore (1970) also deduced from (2.4) with zero right-hand side that 

in fact, O(c2) holds here since there are no O(S) contributions to U , .  In our context, 

u, . v(flrb) = O ( ~ Z ,  F). (3.5) 

Hero and subsccluently, the max imum of altermtive estimates is implied. The con- 
straints (3.4), (fj.5) mean t h a t  U,, is geostrophic, analogous to Bretherton & Haidvogel’s 
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(1 976) conclusion for evolved turbulent flow around large-scale topography. Using 
(3.2, 3), the largest O(a) terms of the time-averaged momentum equation (2.3) become 

(3.6) 

V H ~  = ~VH(VI.V~!)-~/~VR@-FF~B/€~-F{~VH(V:.TB~/~) + ( k . c ~ l ~ B i / h )  (kA v!)}. 

At this stage, @ may be any function ofp = f/h.  The lowest-order balance in (3.6) is 

v€f(E2 - iVl * vHc! +/pP(d$/dp)dp)  = ', (3.7) 

which merely relates the mean surface elevation geostrophically to the mass trans- 
port stream function $. The mass transport @ itself is not determined at  this lowest 
order, but only weakly by the effects of friction, i.e. the O(P) terms in (3.6). Although 
the O(F) terms are small, they are the only ones having an integrated effect around 
any closed f / h  contour. In  other words, (3.6) really represents two balances of forces: 
a mean pressure balance (3.7), with terms O( 1)  relative to mean pressures, and a weak 
O(F) mean torque balance obtained by integrating (3.6) around any closed f / h  contour: 

f a - 4 4  = 0. (3.8) 

The circulation around any closed geostrophic contour adjusts so that the line integral 
of the depth-distributed stress TB/d around the fluid circuit a8 it moves (a Langrangian 
viewpoint) averages to zero in time. 

The strength of friction does not appear in (3.8). For practical application, (3.8) is 
written as 

$h-'( 1 + €V . Vt) (T~1-k  €TBa + €Vt . vTB1). (dl + Cdl. VVt) = 0, 

around the fixed geostrophic contour. This 'expansion takes sufficient account of the 
circuit motion for the lowest-order mean current estimate at  O(s). Hence any linear 
relationship between the current v and stress T~ results in a quadratic form for the 
mean current in terms of the oscillatory motion. Examples are given in $5,  but we 
here note the simplest case T~ = k v  for which (3.8) becomes 

f h - 1 6 .  dl = $h-l(v: A curl v, - v,V . v!) . dl (3.9) 
or 

$h-,-1UL. dl = $h-'{(dl. VV,) . V! - (V  . V;)V,. dl} (3.10) 

completely determining U, (and therefore 5) by (3.4, 6). In our small amplitude (8 )  

weak friction (F) limit, the oscillations v, are calculated merely from the linear 
inviscid shallow water equations (i.e. (3.1) without FT~, )  and are assumed to be 
k n O W n .  

This quadratic relationship, independent of the magnitude of weak friction, is 
analogous to that for the mean current adjacent to the bottom boundary layer in the 
non-rotating case (Longuet-Higgins 1953). However, rotation leads to uniformity 
with depth and so to a weak O(F)  determination throughout the depth rather than 
an O( 1) determination merely within O(F) of the bottom. Moreover, the rotational 
constraint that U, be geostrophic links together all points around an f / h  contour in 
determining 

The form of rB may considerably affect the calculated circulation. This is illustrated 
or UL, whereas the determination is local when rotation is absent. 
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w 
Urr,= 0 ( € 2 L )  J 

FIGURE 1. Small-e closed circuit motion. Initially P = conshnt on C,. Fluid on C, inores to C 
after one period to. Quantities are dimensional. 

by the $5 examples and in $7 where T~ represents effects of horizontal viscosity and 
growing oscillations. 

Under more general conditions the dimensional torque balance is 

0 = -$fhVHp.dl-fh-'VH. (/",UBUe d ~ )  . dl + f h-G,, . dl - f d-kB. dl. 
(3.11) 

The additional terms result from mean horizontal density gradients Y H p ,  mean 
momentum fluxes within the bottom (and/or surface) boundary layer, a d  the mean 
wind stress G. The essential linearity of the mean current problem (Heaps 1978) is 
thus illustrated for small B (assuming mean currents small enough for insignificant 
interaction with each other or the oscillatory motion). Mass transports may be 
synthesized from 'tidal stress', density and wind stress contributions, as done by 
Prandle (1978), for example. A sea surface slope contribution requires either 'open' 
geostrophic contours crossing the region studied, or different conditions, e.g. stronger 
friction. The tide generating potential CE and atmospheric pressure p ,  contribute no 
torques, merely modifying the pressure balance (3.7) where c + p p , / p  - CE replaces y. 

4. An heuristic approach 

vorticity equation (2.4), viz. 
We now obtain (3.8) by an order of magnitude argument, starfing from the potential 

(4.1) 

where P -= (o +f/e)/d and U/Dt is the material derivative or rate of chiuige following 
a fluid column. 

Let C be any simple closed C I I ~ V C  eiirlosing ti11 area S ; i d  moving with the fluid. 

d DPIDt = - Fk . curl T B / d  
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Shallow lUY 
Deep 

fU' 

FIQURE 2. Net anticyclonic frictional force about shallow water: 
displacement (+) , velocity (+) , force ( a). 

since the volume ddA of any fluid column remains constant: D/Dt(ddA) = 0. Averag- 
ing over one oscillation period to, 

P P 

- CF 9 (de)-%E. dl = tc'J PddA 
C A S  

where A S  is the area between the initial and final positions of C (figure I). The integral 
over A S  is well defined since w is the same at both ends of the period to. We obtain 
(3 .8)  by showing that A S  is small, and that the integrand PddA integrates to almost 
zero by volume constraints. 

Let C initially be a geostrophic contour C,, apart from an O(e2, F), displacement. 
C moves on average with the mass transport velocity eUL, and therefore parallel to 
itself with error O(e2, 3'). After one period the dimensional normal displacement is 
O(sU(e2, F)/f , ) ,  i.e. non-dimensionally 

A S  = 0(c2, F)G.  

Around C,, P is nearly uniform. Individual fluid columns follow C, with error 
O(e2, F) around a circuit, owing to the direction of U,, and during a circuit the value 
of P changes by the average rate Fe, from (4.1), multiplied by the time E-2. Hence P 
equals a uniform value P, on C,  with error only O(e, FIE), and we can find a nearby 
curve C, on which P = PG exactly. C, and C,  are separated by at most O(e2, P). Let 
C = C,  initially. Then Pd = P& on C,, [Pa + O(Fe)]d on the same fluid circuit after 
one cycle and hence in AS; (4.2) gives 

f (de)-lTE. dl = - P,(t,eF)-lI ddA + O(s2, F)e2Fe/Fe. 
C As 

Volume conservation requires J ddA = 0. Since C, and C,  are close, 
As 

(&)-%,.dl = 0(e2, 3) 
4 c  

(3.8) 

when C is initially a geostrophic contour C,. 
To summarize, the mass transport is so constrained byf/h contours and volume 

conservation that essentially the same fluid cirouit keeps its position around a closed 
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FIGURE 3. One-dimensional context. Bottom z = -h ( z ) ;  depth contours (- - -); 
coast (LUU) (divergent flow only). 

f / h  contour. Hence the mean circulation has time to settle down to a value for which 
there is no mean torque on the circuit. 

Along the sloping sides of an area of shallower water, (3.8) tends to imply an anti- 
cyclonic circulation around that area. For uniform f, consider a fluid column in c, 
where initially C is a closed depth contour C, around a sandbank or other shallow 
area (figure 2). At the time of the column’s maximum displacement up the slope into 
shallower water, the Coriolis force has made its total contribution to the oscillatory 
cyclonic velocity component. Consequently there is an anticyclonic frictional force, 
which is more strongly felt by the column for being in shallower water. Half a cycle 
later, the corresponding cyclonic frictional force is less. strongly felt for being in 
deeper water. This anticyclonic resultant of oscillatory frictional forces will generate 
an anticyclonic mean circulation until balanced by the latter’s associated frictional 
drag. 

5. Examples 
(a )  One-dimensional features with various forms of friction 

The analysis for non-divergent motion in Huthnance ( 1 9 7 3 ~ )  with T~ = krv gives 
-C 

h-% = 0 (5.1) 

where h = h(z) (figure 3) ,  f is uniform and the average is taken following a fluid 
column. This is clearly the form taken by (3.8) omitting integration over the uniform 
conditions along the geostrophic (i.e. depth) contour. Hence for an ‘incident’ current 
Re(u,, v,) exp ( i d )  where h = h, (uniform), the Eulerian-mean current is 

(5.2) 

where 7 -= 4 is the local z displacement, amplitude lu,(h,/hcr. In  this and the follow- 
ing one-dimensional examples, the Lagrangian mean V ,  is E - fq&,@x. Hence ij and 

ij = - h-ldh/dX( f? - F1) 
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0 r\ I l o  

I rnA 

FIQURF. 4. The mean current coefficient A(a)  in $5 (a), for uniform viscosity. A = 8 for 'CB = V. 

V,  are quadratic in the oscillatory current, independent of the weak friction, and 
usually (especially a) anticyclonic around shallower water since if h Q h, and 
w, 5 u,, then wl 5 - fy in (5.2). These properties are shared by the widely used form 
T~ = Clvlv for which 

h-'lv(; = 0, (5.3) 

replace (5.1) and (5.2) respectively. However, if (for example) the oscillatory w1 is 
locally zero, then 

a = -f;ih-ldh/dx (linear friction), 

Z = - 8 f$h-ldh/dx 

the two friction laws imply quantitatively different mean flows. 

becomes d-'vc = 0. Hence 

(quadratic friction); 

For divergent flow in uniform depth against a coast (figure 3) with T~ = kv, (5.1) 

replaces (5.2) if we assume zero pressure gradient along the coast so that w1 = - fr. 
If friction is modelled by an eddy viscosity v,K(<), then we take F = (vo/foh8)~; 

< = (z+h)/F is a scaled vertical co-ordinate for the bottom boundary layer where 
uB is significant. The torque balance (3.8) must be modified to include mean momen- 
tum fluxes in the bottom boundary layer as in (3.11). The bottom stress T~ is generally 
a rather complicated functional of v as discussed by Johns & Dyke (1972), and we 
omit details here, although there is a simple linear contribution from the mean flow 7. 
Replacing (5 .5) ,  

where 7 now represents a complex amplitude. A = 4 would recover ( 5 4 ,  but (for 
example) uniform viscosity K = 1 actually results in A(a)  as shown in figure 4. At 
low frequencies (F Q u 4 f ), A = 27/80 so that 

= f r m ) ~ * ~ ,  + A * ( c ~ * , I  
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Stern & Shen (1976) consider the case (not treated here) of oscillations so slow that 
spin-up is always complete, i.e. u < F < f. 

The eddy viscosity forms K(C) = g p  pass from uniform viscoaity at  p = 0 to the 
linear increase with distance from the bottom characteristic of a logarithmic boundary 
layer at p = 1. The latter form has been extended to model the rotary spiral as well 
(e.g. Kagan 1972). Then for small P the additional boundary layer mean momentum 
flux term from (3.11) may be neglected, and (5.5) applies as the bottom stress approxi- 
mates T~ = Icv. More details are included in Huthnance (19738). If the ‘constant’ v, 
is proportional to the instantaneous velocity Ivl outside the boundary layer, then the 
eddy viscosity vo[ should yield T~ = clvlv approximately. 

A one-dimensional context cannot strictly exist, but forms a good approximation 
to circular symmetry if the radius greatly exceeds the ‘2’ length scale. It is also 
applicable to linear features such as sandbanks (Huthnance 1973a) where most of the 
integration in the circulation constraint (3.8) is along two straight-line segments. If 
the context is only locally one-dimensional, then the geostrophically guided mean 
current is subject to external influence (Johns 1973) since the frictional control is 
weak. For example, an endwall at  y = const (figure 3) would prevent mass transport 
along the depth contours. 

(b) A polar ,&plane 

Rhines ( 1976) considered mean flows associated with non-divergent oscillations in 
water of uniform depth when f decreases linearly from the centre of rotation. In  his 
$ 8 0 ,  a simple bottom friction 7B = D v  is used (our notation) so that (3.9) can be 

, applied. For the oscillatory motion we write - 7  = radial displacement; since 
k . curl v, = - bq (Rhines’ equation (35)) we have a zonal mean flow 

- 
5 = -/IT+. 

This agrees with Rhines’ equation (38), case (c) which matches our case of periodic 
oscillations. In $ 7 (b) below we also match Rhines’ (1976) result 

- 
;ii = -tp?l=, 

for inviscid motion starting from rest. The negative signs imply anticyclonic flow. 
Both these formulae are relevant to Whitehead’s (1975) experiment, as discussed by 
Rhines (1976). 

( c )  Small depth variations in a rectilinear current 
Consider a rectilinear oscillatory current v, e U(t)l (associated with a Kelvin wave) 
slightly perturbed by small depth variations of length scale much less than a tidal 
wave length. For linear bottom friction and uniform f, (3.9) gives 

where we have written V .v: = - h-lvi. Vh, and w, = f/hv: .Vh by ( 2 . 4 ) .  ‘On average’ 
a h / h  is uncorrelated with ( l . n ) 2  which averages 4, so that the mean circulatory 
current is 

V = (ut,”f (Vhl/2h 

and is anticyclonic around shallow water regions. Hence the mean vorticity is pro- 
portional to  (oscillatory displacement)2, JVh(/h, and (topographic length scale)-’ ‘on 
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FIGURE 5. Isolated feature beneath large amplitude oscillations. Particle path (- - -); weak 
‘downstream’ vorticity (q) totals - K ( C ) .  

average ’. This agrees with Zimmerman’s ( 1978) result, for small-amplitude oscilla- 
tions in the context of small random topography. 

6. Large-amplitude oscillations 
Consider (figure 5 )  an isolated topogmphic feature, such as a sandbank, bounded by 

a closed curve C of horizontal extent less than an oscillatory particle excursion, .i.e. 
E 2 1. We take the Coriolis parameter f to be essentially uniform, as also is the depth 
in the region R outside C. Hence the effective length scale in R is much larger and we 
take eR < 1. 

The potential vorticity equation (2.4) with T~ = kv is 

(a/at + w . V,) (w +f/e)/h = - F/h k . curl v/h (6.1) 

(In fact most of this section is clearly independent of the particular friction type.) 
We have assumed that surface elevations are a small fraction of the total depth 
( e l l 2  < l),  writing h for d. 

In R, where f and h are essentially constant, (6.1) gives 

D o  F o  
D t h  h h  

so that for each fluid column o spins down to zero. For fluid columns approaching C 
from R we then have 

More detailed discussion of the conditions for (6.2), iff and h are not uniform in R, is 
given in Huthnance (19734, but the best justification is apmteriori from the resulting 
flow field. The occurrence of spin down is independent of the particular form of bottom 
friction. 

Since E 2 1, we can expect that fluid columns stay inside C only for a few oscilla- 
tions, or for only a small fraction of the time. Then by (0.1) the changes in potential 
vorticity ( w + f / e ) / h  are O(F) and can be neglected to lowest order. Hence (6.2) also 
holds within C .  We clen.rly excliide the small 6 phenomenon of n Taylor column or t.he 

-- = --- 

(a + f / W  = (f/% (6.2) 
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Lagrangian-mean flow around f / h  contours discussed in $33-5. Again the best justifi- 
cation is a posteriori. As with small 8, we note the analogy with Bretherton & Haid- 
vogel’s (1976) conclusion for evolved turbulent flow, here over small-scale topography. 

The mean current is determined by (6.2) and the time-averaged continuity equation 
(2.2), viz. 

VH.(h$) = 0 (6.3) 

provided sD2 < 1 as before. These are simply the equations governing a steady 
current which conserves potential vorticity, and are treated by Batchelor (1967, 
$7.7). In  particular, the circulation around any closed curve I’ emlosing a domain D 
near or inside C is 

K ( r )  = / IDf /€(h/h , -  1)dA; (6.4) 

K( r) is anticyclonic around shallow areas. Further, the mean vorticity is proportional 
to lVhl/h and the topographic length scale, contrasting with the small-amplitude 
result in $5 ( d ) .  The latter’s proportionality to (oscillatory displacement)2 is replaced 
by (topographic length scale)2 when E reaches O(1). 

The circulation (6.4) cannot persist far from the small curve C since any friction 
would induce large torques. In  fact, (6.1) times h integrated over the area within C 
implies a vorticity generation rate - FK(C)/h,  there. Since we consider a ‘steady 
state’ with no vorticity build-up within C, this quantity is advected outside to R. It 
decays in R with time-constant F/h, by (6.1), so that the total vorticity in R is 
-K(C).  This just cancels the total vorticity K ( C )  within C. There is no circulation 
around any circuit in R enclosing all the advected vorticity - K(C)  as well aa C. Since 
F is small, the total vorticity - K(C)  is smeared out thinly over a large area of R, and 
to lowest order may be ignored. This paragraph is really a justification for using (6.2) 
near C despite the attendant spurious circulations around distant curves in R 
enclosing C. 

Similarly (Huthnance 1973b), for a steep-sided island (6.1) leads to 

$h-lV.dl = 0, $v .d l  = constant 

where the closed path of integration around the island is taken immediately outside 
the steep slope. If instead the island has a shore with absolute slope O(h,/L), i.e. 
O( I )  after scaling, then 

fh - l v .  dl is finite 

when the closed path of integration tends to the island shoreline. 
On account of (6.2), the equations of motion (2.2, 3) take the form 

V .  (hv)  = 0, &/at + fMk A v = - VZ 

if we neglect O(F, so2, 0 2 )  and all forcing. Here f,,, = h(f/h),, 2 = [++v2 .  These 
equations are linear in the flow variables v, Z despite the inherent nonlinearity when 
8 2 1; the surface elevation is related non-linearly to the currents through 2. They 
also describe linearized non-divergent flow over a variable depth h when the Coriolis 
parameter is fnf. For oscillations Re u exp ( i d )  we may write 

u = h-lV,I, A k where V .  (h-lV@) = 0 
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FIGURE 6. Island-shelf geometry in large incident current. 

since fMlh is uniform. The oscillatory motion has zero vorticity, as implied by (6.2), 
and on our small (non-divergent) length scale can merely interpolate inside and near 
C between the externally imposed oscillations. Gravity waves are filtered out by the 
non-divergence, and topographic Rossby waves are impossible because the 'base- 
state' potential vorticity fM/h = (f/h), is uniform. 

As an'example (figure 6) we consider the motion near a circular island r < a (using 
plane polar co-ordinates r ,  8). There is a shelf of depth h = A(a < r < 1). Elsewhere 
h = 1; f = 1 everywhere. We suppose a uniform rectilinear oscillatory current and 
steady flow U(a + cos at) (cos 8, -sin 8) far from C: r = 1. Matching @ and h-la$Iar 
across r = 1 we have 

UsinO(a+ cosd)(Dr-E/r)-AAlnr (r < l), 
$=[ UsinO(a+ cosd)(r-B/r)-Alnr (r > l), 

where {B, D ,  E}  = (1 + A  + (1 - A)a2)-1{ 1 -A + (1 + A)a2, 2A, BAaZ}, 
in addition to the mean azimuthal flow 

r (a < r < I), 
l/r (r > 1). 

V = -f(l-A)/26 

The circulation constraint at the island determines A = f (1  - A)a2/2e. The total 
anticyclonic circulation 1611. dl around the circle at radius r is therefore 

although, as discussed above, this should decrease slowly to zero for sufficiently 
large r .  

7. Other extensions 
(a) Small gradients of flh 

If gradients of f/h are small, V, is less constrained to follow geostrophic contours. 
Nevertheless, the time-averaged momentum balance (3.6) still holds, and its lowest 
order (pressure) balance is a simpler form of (3.7): 

VH"* - h . V*G + ?km = 0. 

FLY I02 
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Hence the mean surface elevation is related to the mass transport stream function $. 
However, ~ is now arbitrary. As before, (3.6) also contains a weak torque balance, 
which is now much more widely applicable. Indeed, when f / h  is uniform, (3.11) (and 
(3.8) when appropriate) applies around all closed fluid circuits. Equivalently, we take 
the curl of (3.6) for a mean vorticity equation; assuming TB2 depends linearly on 
f and U,, 

V, . (h-2V1&) = quadratic form in known oscillatory quantities. 

This clearly determines @ subject to the natural condition of specifying $ on the 
boundary. However, (3.8) is a more direct statement of the physics and in simple 
geometries (cf. $ 5 )  ca.n prove an easier basis for calculation. 

An intermediate case occurs if V,( f / h )  = O(F)  so that the guidance of U, by 
geostrophic contours is weak and comparable with the frictional torques. For linear 
bottom friction, curl (3.8) gives 

Q,.(h-2V,@)+ k.(V& A F-’VHf/h) 
= quadratic form in known oscillatory quantities. 

It is ea.sily shown that specifying II. on the boundary ensures uniqueness of any 
solution. The equivalent of (3.8) is 

- f d - ’ ~ B .  dl = fF-’( f /h  - (f/h))V,$ .dl, 

where ( f / ? i )  is the average of f / h  around the circuit. Hence the net frictional torque 
around the fluid circuit provides for the export of potential vorticity in the Lagrangian- 
mean current. However, this circuit integral is no longer a practical basis for calcula- 
tion. 

( b )  Inviscid motion of varying amplitude 

Hitherto, the term TB/d has been interpreted as a bottom stress. However, as it stands 
in the momentum equation (2.3), it  may represent any of several weak constraints on 
the motion and circulation. One of particular interest is oscillatory motion growing 
slowly from rest. We represent this by 

{v(x, t ) ,  R X ’  t))exp (p% 

where p is small. Then F = plfo and TB/d represents 8 s v1 + 2 m 2 ,  if E 1 and D2 < 1 
so that the non-divergent approximation holds. The circulation result (3.8) becomes 
a modified form of Kelvin’s circulation theorem, 

$$.dl = 0.  (7.1) 
Note that 8 + v. From (7.1), 

r$ v2. dl = 1 f h(mn)2a/n)2an(f/h)dE, 
CQ CQ 

\vhich implies anticyclonic mean circulations around shallow regions of fluid. This 
occurs because fluid columns entering C,  gain anticyclonic relative vorticity (by 
conservation of potential vorticity ), whilst those displaced outwards across C gain 
cyclonic relative vorticity. 

Writing v4.n = q and af/an = -B, (7.2) immediately gives Rhines’ (1976) result 
ti = - */3? for the polar ,&plane ( 5  ( a ) :  h is uniform, C, is a latitude circle and zonal 
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averages are taken). Colin de Verdihre (1979) observed such a mean flow experi- 
mentally. His calculations further suggest that this zonal mean current has an initial 
growth rate p4sU > 2psU if the (modulated) waves already exist without it. 

If D2 is not small, the Lagrangian-mean velocity is slightly divergent: by (2.2) 

VH. (hUL) = FD2{V,. (FV) - 2c2} 

replacing (3.4). The additional terms on the right-hand side of (3.8) or (3.11) are then 

- P1$f k A U,. dl = - F-y/h$hU,. ndZ = D y / q $ @ . n d l +  21i3iA); 

$72. dl = #$h(vTn)V/an( f/h)dZ + (f/h)DZJ[&A (7.3) 

replaces (7.2). The integral of c2 is taken over the area 8, enclosed by the closed f / h  
contour C,, and represents a mean column stretching within C,. This has a direct 
effect on the circulation around C, by conservation of potential vorticity. By (3.7), 
It2 is a double integral of the mass transport velocity d ~ / d p ,  so that (7.3) is a second 
order ordinary differential equation in p = f / h  for I/pd$/dp.  

As an example we consider a B-plane (f = By) of uniform depth h = 1, and suppose 
all quantities independent of z. Then the line integral in (7.3) is taken parallel to the 
x axis, but may be dispensed with on account of the uniformity in z (cf. 6(a) ) .  The 
area integral implies integration in y .  Writing 7 = wt and using (3.7)' (7.3) becomes 

where 
XUY - (BDYYX = 

Y- 

N = #/3y2DZ/ 7cu, dY' + Y (Wi - 4Bi7 .  
The value of N is known from the oscillatory motion, and the solution x = 
1" FU' y"(d@/dy")dy"dy' determines both c2 = - &rlY, - Bdx/dy and UL = y-'d2X/dy2. 

J J  
Since the results of this section are independent of the small growth rate and even 

of its sign, we can consider any slow change of amplitude. Then the change of mean 
current is given by the change in the right-hand side of (7.2)' say. Hence the spring- 
neap tidal cycle (for example) entails an associated fortnightly (MSf) variation in 
'mean' currents and sea surface level. In practice, shallow-sea friction is likely to be 
strong enough to play a role; a decay time of a few days or less ensures this. Then 
the 'mean' currents are determined by a linear combination of (3.8) and (7.2), in 
proportion to the friction strength and current rate of change respectively. A fort- 
nightly variation in 'mean' currents and surface elevation still ensues. 

(c )  Lateral stress 

If the right-hand side of the momentum equation (2.3) includes weak viscous terms 

(vo/f&a)vH * (VVHV) 

then we can define P = vo/f&2 (the horizontal Ekman number) and use TB/d to 
represent - V, . (vV,v). Hence (3.8) becomes 

$VH. (vVHV). dl = 0. (7.4) 

In  general this cannot be made any more explicit for 8, and merely illustrates the 
same. constraint on the Circulation that the torque around a material fluid circuit 

13-2 



382 J .  M .  Huthnunce 

must average zero. However, in a one-dimensional context with a/ay = 0 (cf. 5(a),  
figure a), we omit the line integral. Then for uniform v, 

axz = -Tvzxx: 
- 

replaces (5.2) in the non-divergent context of Huthnance ( 1 9 7 3 4 .  The constants 
A and B must be determined by lateral boundary conditions, but the term in dhldx 
shows a tendency for anticyclonic circulation around shallow water-regions. 

(d ) Intermediate amplitudes 

Andrews & McIntyre (1978) have introduced a generalized definition of Lagrangian- 
mean velocity, W, valid for oscillations of finite amplitude. Their corollary 111 
regarding circulation becomes 

where a closed curve moves with the velocity f i L  and the 'pseudomomentum' p is a 
known quadratic function of the oscillatory displacements 5. Although our results 
do not follow simply from ( 7 4 ,  this equation does nicely demonstrate the transition, 
as E increases, from friction-dominated to vorticity-conserving mean flows. 

For small E the right-hand side of (7.5) is -F$d-LTB.dS. Hence (3.8) implies that 
the Lagrangian-mean flow SO closely bound to f / h  contours that the left-hand side 
of (7.5) can be neglected. 

For E 2 1 ,  small F implies near-conservation of potential vorticity, effectively 
neglecting the right-hand side of (7.5). The Lagrangian-mean flow is then (almost by 
assumption) not at  all bound by f / h  contours. 

For intermediate E ,  both sides of (7.5) play a role. The mean circulation around 
fluid circuits moving with the Lagrangian-mean velocity evolves under the influence 
of frictional torques. 

( e )  Small depth variations 

We can find the Eulerian-mean current for intermediate E when the depth variations 
are small. This is the case considered by Zimmerman (1978, 1979), and can be made 
more explicit when friction is weak. 

Since the depth variations are small, O(S) where S < 1, we can write 

h = h, + Sh,(x) + . . . , v = v, + Sv,(x) + . . . , 5 = 5, -I- E,6~l(x) + . . . , 
TB = T0+ST1(X)+ 9 . .  

where v,, f,  7, satisfy (2.2, 3) exactly for h = h, but, like h,, vary only slowly, by 
O(s,), on the present short length scale L of the small depth changes. We can also 
assume D2 = O(E:). Then at O(S) the continuity equation yields 

V . V ,  = -h, lv , .Vh,  (7.6) 

(7.7) 

and the vorticity equation (2.4) yields 

D/Dt(w -fh,/h,) = - P k .  (h;l curl.r, - h,y2Vh, AT,) 
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FIGURE 7. (a)  Slope cross-section. (a) Mean longshore currents 3 for a / L  = $,#, I .  (c) Dependence 

of maximum mean current Z and transport M = 
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where w = av,/ax - au,/ay, D/Dt 5 a/at + v, .V. Vorticity is generated by the greater 
effect of the main bottom stress 7, where the water is shallower, and decays owing to 
the associated bottom stress torque curl 7,. If the bottom stress is linear, i.e. 7, = v,, 
and F is small, then the solution of (7.7) for a particular fluid column P is 

P 
up = f ( h ,  - &p)/ho + k . Vh, A v,, /ho 

where the overbars denote averages in time for P. We know the fluid column trajec- 
tory, defined by v,, viz. an ellipse with principal axes a, b (say), with which we can 
suppose the x, y axes are aligned. Hence we can find the time average of w at any 
position x, (instantaneously w = w?, when P is at  x,): 

Here the spatial averages ( ) are taken over the ellipse {xo+ 2p(acosq5, bsinq5): 
0 Q ,u Q 1, 0 Q q5 Q 2n); there is a weighting factor (47r2ab,u( 1 -,u2)*)-l in the averaging, 
and 8, = T qu( -a sin q5, b cos q5) according to whether the ellipse is described clock- 
wise ( - )  or anticlockwise (+  ). Over local shallower areas, the first contribution to 
Tj gives anticyclonic vorticity and the second gives vorticity in the sense of the current 
ellipse polarization. The first term dominates for large particle excursions ( E  

Equations (7.8) and (7.6), i.e. V.V, = 0, determine the mean flow field, which on 
account of (7.8) has (dimensional) scales eUAh/ho, LfAh/h, respectively for small and 
large E ,  in agreement with f f5(c)  and 6, and with Zimmerman (1978). A qualitative 
picture for intermediate E is furnished by cross-slope oscillations over a straight ridge 
(figure 7a; b = 0 giving a ‘neutral’ zero second term in (7.8)) and approximating ( ) 
by a spatial mean. Figures 7 (b, c) sketch the spreading and intensification (towards a 
maximum *fLAh/h,) of the long-slope mean current as E = a / L  increases. Over a 
monotonic slope between infinite regions of different uniform depth, the mean current 
differs in continuing to increase proportionally to E for large E ,  as does its breadth 
(Huthnance 1 9 7 3 ~ ) .  However, the ridge is more representative of real topography 
where individual features are of finite horizontal extent. 

Zimmerman (1979) has emphasized that, unless particle excursions (e) are small, 
the Lagrangian-mean flow cannot be obtained by adding a Stokes drift to the present 
Eulerian mean, even though both are small, O(EE,U) and O(6U) respectively (see also 
McIntyre 1980). However, for the total mean current, it is possible simply to add the 
short-scale (L) mean current of this section to the mean currents arising from the 
large scale (solL) variations of h, and the flow v,, these being calculated as in $ 3  
since EE, < 1. 

1). 

8. Discussion 
We have considered the determination of mean (rectified) currents due to oscillatory 

motion above a frictional bottom boundary layer in shallow rotating fluid. For small 
amplitude oscillations, the main result (3.8) is that the depth-averaged mass transport, 
which follows geostrophic contours, has a strength such that closed fluid circuits 
around geostrophic contours experience no net time-averaged frictional torque. 
Hence the mean current is independent of the (weak) friction magnitude and quadratic 
in oscillatory quantities. Given this mean current, the mean currents in the bottom 
boundary layer can be cnlaulnted (,Johns & Dyke 1972) to complete the analogy with 
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Longuet-Higgins’ (1953) mass transport calculations in a non-rotating system. 
However, with rotation (as opposed to without) the mean current is determined 
weakly throughout the water column (rather than strongly just near the bottom 
boundary layer) and by all points around a geostrophic (f/h) contour in combination 
(rather than locally). The weak determination implies a liability to control by external 
constraints, notably termination of an f/h contour at a sidewall which imposes zero 
mass transport. The torque constraint (3.8) may also be modified by mean momentum 
fluxes in the boundary layer, and the mean current may include added contributions 
from horizontal density gradients and wind stress forcing as indicated by (3.11). 

In shallow seas of limited extent, sea surface slope may also appear as an externally 
imposed variable (at open boundaries) which affects the mean circulation. This point 
of view is natural when modelling such seas numerically. However, the sea surface 
elevation is a flow variable and thereby subject to internally imposed constraints, 
particularly if frictional forces are genuinely weak. It is related to the mass transport 
by (3.7), a severe restriction if V,(f/h) = O(1) so that + is a function only of f/h. If 
a geostrophic contour enters at one open boundary and leaves at another, the difference 
in the mean level c2 between the two ends is required to match the difference in 
+vl.V&. Any discrepancy in matching this internal constraint is liable to mag- 
nification by O(F-l) in its effects on mean currents. If possible, it appears preferable 
to specify the normal component of the latter at open boundaries, bearing in mind 
that, with error O ( F ) ,  the mass transport should be geostrophic. 

Mean current magnitudes pass from O( U2/f&Ah/ho) to O(f&Ah/h,,) (if L is a topo- 
graphic length scale) as 8 = U/f& increases through unity. These estimates agree 
with those of Zimmerman (1978) for small random topography. The quadratic 
increase with particle excursion U/fo  levels off when the mean relative vorticity 
approaches a value representing uniform potential vorticity. 

The present analysis is restricted to ‘organized’ barotropic motion subject to weak 
friction or growth. It therefore does not cover (for example) turbulent eddy contribu- 
tions to oceanic circulation (Rhines & Holland 1979), mean motions associated with 
internal waves (e.g. Bretherton 1969) or friction-dominated estuarine circulation 
(Ianniello 1977, 1979). 

The weak friction assumption, in the context of tidal currents, means decay times 
of a day or more; a one-dimensional example (Huthnance 1973a, (2.9)) shows a 
departure from the weak friction limit of just the fraction F. The assumption is not 
unduly restrictive in many shallow sea contexts, and tends to be compatible with the 
small amplitude ( 6 )  assumption made in all but 96. Representative conditions for 
e < l , J ’ <  1 a r e U G  l m s - l , L > l O k m a n d h > 2 O m .  

The small F, e results depend on neither parameter to a first approximation, which 
tends to increase their usefulness. However, the simple examples of 95 show that the 
particular type of friction - as opposed to its magnitude F - does affect the resulting 
mean currents. (Exceptions to this are eddy viscosity models va (z + hy, 1 < r < 2, 
which approximate the linear bottom drag law). Hence numerical models attempting 
to simulate mean ‘residual’ currents should represent bottom stress and boundary 
layer forms accurately. 

Even more important for numerical modelling is that the weak O(F)  torque balance 
which determines the residual current strength should not be upset by spurious 
contrihutions from inaccurately-represented pressure terms. Where possible (e.g. 
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non-divergent flows) it may be easiest to use an explicit vorticity equation (Roache 
1976). In  any case, the numerical scheme (e.g. Sadourny 1975) should conserve both 
(i) mass, since the pressure/torque separation of the momentum balance (3.6) depends 
on the non-divergence of U,, and (ii) vorticity; 

vl. V,vl - fk A vi . VHvl+ - &V,(vi. Vc,) (F + 0) 

is also crucial to the torque balance and is therefore required of the numerical repre- 
sentation of these terms. These conditions tend to  disfavour calculating mean flows 
using ‘ tidal stress ’ terms ‘imported ’ from a separate tide model. 

If the above conditions are satisfied, the mathematical analysis of Q 3 has a numerical 
analogue. That is, the mean current generated by the numerical model is governed by 
a numerical equivalent of (3.8). An essentially explicit quadratic dependence on the 
oscillatory motion follows, and one can expect relative errors of the oscillatory 
motion to cause (only) doubled relative errors in the mean currents. Greater errors 
are likely to arise from the numerical handling of the frictional stress and bottom 
boundary-layer form. 

This work, part of which appears in the author’s Ph. D. thesis, was begun under 
Natural Environment Research Council Research Studentship no. G4/70/0F/4, at 
the suggestion of Prof. M. S. Longuet-Higgins. The author is grateful to him and to 
many colleagues at Bidston for a revival of interest. 
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